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Rotating soliton solution in Einstein-Maxwell-dilaton-axion gravity
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We demonstrate the possibility of the application of the inverse scattering problem technique to a chiral
string system with the nontrivial group condition. We consider the Einstein-Maxwell theory with dilaton and
axion fields and construct the massive rotating solution with nontrivial fields characteristics by use of the
Belinski-ZakharovL-A pair.
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I. INTRODUCTION 1

8(4)=J d4x|g|1’2(—R(4)+2(9¢2+ Ee“"’axz—e‘ZQ’F2
Recently much attention has been given to the study of
gravity models appearing in the low energy limit of super- ~

string theory[1]. Some of them possess the chiral matrix _KFF>- 2.9
representation in the stationary case that allows us to apply

the different mathematical methods for the construction oHere R=R"" is the Ricci scalarR%, ,=d,I'%; ) of the

Ao
exact solutions. four-metricg,,,, )
The model under consideration is the Einstein-Maxwell

theory with dilaton and axion fieldEEMDA). It appears in E =0 A —d.A

. . . . y7a u v vl o
the framework of heterotic string theory after the omission of (2.2)
a part of the fields arising during extra dimension compacti- 5 1
fication. As has been established earlier, the three- Frr= EEW“’FM,

dimensional chiral matrix of this theory belongs to the
Sp(4,R)/U(2) coset representatidi2].

The EMDA theory is well investigated and a number of
exact solutions of this theory is construc{@d-4]. Therefore
it would be interesting also to apply the inverse scatterin
problem techniquélST) [2,5—7] to this model for the con-
struction of exact solutions.

In this paper we continue to consider the IST application _ A2 f1h Ay
to chiral theories with matrix dimensions greater than two. ds*=f(dt—w;dx)*— £y dxdx, 23
Starting from a trivial group mod€i8], we generalize the wherei=1,2,3. As it has been shown i8], in this case part
result to the case of the symplectic group. The solution obopf the Euler-Lagrange equations can be used for the transi-
tained depends on a number of constants, and both the syfjon from the spatial components of vector potenfialand
metry and group conditions reduce to the restrictions Ofnetric functionsw; to the magnetia and rotationaly po-

these constants. This way differs from the one proposed ifentials, respectively. The new and old variables are con-
[7]; for the real group the group requirement in the case of amected by the differential relations

arbitrary value of the spectral complex parameter seems to
be not obvious. .24 R -
o . Vu=fe V2V XA+VuX o)+ «Vu, 2.4
By use of the BelinskiZakharovL-A pair for the two- ( vX &)+ «Vy 24
soliton case we construct the nontrivial axially symmetric - ) .
metric and field configuration from the trivial one. This con- Vx=uVo—ovVu-fVXxae (2.9

figuration corresponds to a rotating massive source with al _ . . .
physical charges, possessing a NUNewman-Unti- Jherev—\/iAo, and three-dimensional operat®ris con-

Tamburing parameter. Since the scheme proposed does noékeCted _with the metrich;;). Then the resulting three-
depend on a matrix dimension of the theory, it is possible t imensional model can be described by the actin

apply it to a soliton solution construction for the string grav-

ity models with arbitrary matrix dimension. S:f d3xh2

¢ is the scalar dilaton field, and the axion is written in the
form of pseudoscalar field.

Below we consider the stationary case when the metric
%nd matter fields are time independent. The four-dimensional
line element can be parametrize according%p

—R+ %Tr(JM)Z), (2.6)

Il. MODEL UNDER CONSIDERATION where JM=VMM 1, andR is the curvature scalar con-
structed on the three-metrig;; . The symmetric matrixv

has the form
o vl
M= QP! P+QP1Q)’ 27

The EMDA theory taking into account dilaton, axion, and
Maxwell fields coupled to gravity is described by the action
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where the symmetric ' 2 matricesP andQ are lll. INVERSE SCATTERING PROBLEM METHOD

By use of the Belinskiland ZakharovL-A pair [5] we
would like to employ the modified scheme proposed8h
for a case of matrix model with nontrivial group condition.
So, we consider the Einstein-Maxwell system with dilaton
and axion fields, possessing ti$g(4,R) isometry group,
(2.9 locally isomorphic toSO(2,3) one. This gives the reason to
believe that the scheme presented here may be applicable to
the case of arbitrary orthogonal group string theory.
andw=u-— kuv. Let us describe the main aspects of the scheme used. The
The matrixM belongs taSp(4,R)/U(2) coset representa- axially symmetric motion equation®.13 read
tion [2] and, hence, satisfies the symplectic and symmetric

(2.9

f—v2e2¢ —pe2¢
P= ,
—ve 2 g2

properties V(pdM)=0, where JM=VYM M, (3.2
MTLM=L, and MT=M, (2.10  Vi=4;, i=p,z. The integration of matrix equatiof8.1) is
associated with thé-A pair [5]:
where
~pdM—NIM, ~pIM NI,
0 —I Dl‘/f_szl//v Dzl/f—szdf,
L=l (3.2

M_ M . .
Next, we will consider the stationary axisymmetric field where J*'=pJ™ and the differential operato®; and D,

configurations. The metric and matter fields depend only o€
two space coordinates, and the three-dimensional line ele- )2 5
ment can be taken in the Lewis-Papapetrou form: . A _ Ap .
dsi=h;;dXdx =e??(dp?+dZ?) +p2de?.  (2.11)
% N P \ is the spectral complex parameter and the functibn
The action of the system becomes =y(\,p,z). The solution of Eq(3.1) for the matrixM is
represented as

2s=%f dpdzp Tr(IM)?, (2.12 M(p,2)=¥(0,p,2). (3.4

) ) ) The functiony can be obtained in the form
and the chiral matrix Euler-Lagrange equation reads

V(pdM=0. (2.13 b= Xxo, (3.5

. . . . o where i, is some known solution of the syste®.2),(3.3).
The Einstein equations become the relations defining thghe equations foy are

metric functionwy:
_ pIM,—NIM, p(IM)o—=N(IM,)o

p Dix= 2. 2 XX 2, 2 , (3.6)
y'Z=ZTr[J2"J2"], A +tp N +p
21
(219 e LA Lo VAT
p 2X— 2, 2 - 2, 2
7= g D= (). Mp MEp 57

In these relations all variables depend on two coordinates It is necessary that the resulting matrix solution be real
and z, and the operatoV is connected with the flat two- and symmetric, as well as it must satisfy the group require-
metric 8, . ment (2.10. The former condition is ensured because we

In the stationary axisymmetric case the system under corwill consider only the case of a real matrix but the other
sideration is completely described by Eq2.13,(2.14. ones can be attained after the solution will be obtained.
Now let us consider this system with nontrivial group con-  The soliton solutions for the matrid correspond to the
dition (2.10 and apply the inverse scattering problem pole divergence in the spectral parameter complex plane for
method for construction of soliton configuration from the the matricesy and y 1. For the simple poles, these matrices
trivial fields and space-time metric. may be represented as
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and to put the initial value of matrif =M., :

N N
R
Y= = X Y T
k=1 Mk k=1 143 o3 0 ) 1 0
where the pole trajectories for each p&lare determined by Mo= 0 o3’ Where os=lg 9/ 4.2
wilp,2) :W(m_Zi[(Ww_Z)Z“LPZ]l/Zv W)= const Then, we construct the solution in the Boyer-Lindquist coor-
(3.9 dinates:
for uy(p,z) and the same equation for(p,2) vv_ith the con- p=[(r—m)2—o?]¥2sing, z—z,=(r—m)cosé;
stantw(,, . From the obvious relatiogy =1 (in the poles 4.3

my andpy) it follows that
the new constantsr=1/2(w(,)—w,) and z;=1/2(w,,
Rix ™ (i) = Sex(v) =0. (3.10  +w,) [see Eq(3.9)]. Following the IST scheme we obtain
the expressions for the pole trajectories:
This demonstrates that the matridgsandS, are degenerate
and may be presented in the form 0 0
wi=2 sirFE[r—ero], fp=—2 co§5[r—m—a],
(R)ap=n5Ms, (S an=P405- (3.1 @4

The substitution of Eq93.8) and(3.11) in Eq. (3.10 gives =2 co§§[r—m+(r], vy=2 Sian[r—m—a'],

N N
né=> phlgt, gk=-> mirgh, that satisfy the conditio3.14).
=1 =1 The resulting matrix solution of Eq¢3.1) for M is only
s pkm! unimodular and the main aim now is to provide both sym-
where 'y, = e < (3.12 metry and group requirement. To do this one may note that
M~ Vi asyo (mk.p.2) = Yo vk, p,2) =My, the vectorpX andmk
and one can see thia] become c_:_onstan[see Eq(3.13]. This makes the choice of
some Anzgze easier for these constanlfs. ’
=05 e Dlealy, PA=[Uo(mcp Dlackly, Lo 1'% We consider four columng, andma, k=12,
(3.13 e pu
wheremf, and pk are the arbitrary constants. 03
Sincecghe mact?iWI(p,z) belongs toSp(4,R), it must be pr=Ap? mi=—Am?  where A:( —03 O )
unimodular. As has been demonstrated & for the two- (4.5

solitons configuration, it is important that

These relations leave eight independent parameters, which
M= V1V5. (3.14 can be combined into two matricep=|pX| and m

=|m¥|, k=1,2,a=1,2. Then, the additional restrictions,

As before, we consider the two-solitons case, and one maghat provide Eq(2.10 read

generalize this to the case of 2N-solitons.

The re;ulting solution_for the matri_k/l is unimodular, TrpToy,m=0, Tro,pToym=0,

however it does not satisfy the requiremeiizs10. The

Sp(4,R)/U(2) coset representation of this solution may be

attained by the suitable choice of the arbitrary constants in where o :(O 1) o :(0 _1) (4.6)

Eq. (3.13. Hence, as has been mentioned above, we satisfy Y1 0o " l1 o) '

the group condition after the formal matrix solution is ob-

tained. This will be demonstrated in the next section. Hence, one can see that the coset representation may be
realized on a matrix solution obtained after imposing some
IV. EXACT SOLITON SOLUTION additional conditiong4.5),(4.6) on the constants in this so-

lution. As has been mentioned above, this approach differs
Now let us apply the inverse scattering problem methodrom the one proposed ii7]; the authors consider the group
to the construction of the stationary axial-symmetric two-condition on the matrix solution with arbitrary value of com-
soliton solution for the Einstein-Maxwell system with dilaton plex parametek, but for the case of the real group it seems

and axion fields. to be complicated.
It is natural to determine the asymptotic values of the [et us now present the expressions obtained for the metric
fields as and matter fields. One may naturally determine the physical
charges of the system. So, by entering the nmasthe pa-
fo=1, Xo=Ux=V0= b= K, =0, (4.2 rameter NUTb, the electricQ., magneticQ,,, dilaton D
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and axionK charges, one may write the main parts of the Next, the three-dimensional metric has the form
asymptotic decomposition of the metric and matter fields at
r—oo: A—a?sir? §

d§=Tdr2+(A—az sir? 0)d 6+ A sir? 6d¢?

2m  _  2b (4.17

that coincides with the Kerr three-metric.

VaQ. ViQ,, The dilaton function is
vy U 2 2
(r+D) —(b—acosf—K)
e??= = , (4.18
D 2K 4
¢ T “.7 whereas the pseudoscalar axion field read
The above charges can be expressed in terms of the vector 2[Kr+D(b—acosf)]
k Kk . _
componentp, andm; as follows: K (r+D)?—(b=acosd—K)2" (4.19
m=o(Poms—Psm3), b=—a(Pomi+Pims) (4.9 : ; i i
P2mz—Pamy), p2my+pPam3), : For the electric and magnetic potentials one obtains
Qe=V2a(Psmi+Pmy), Qu=v2o(Pim;—pim3), V2[Qqr — Qu(b—acosh) + DQg+KQ,,]
D=o(Bimi —pimi), K=—o(Bimi+pim?), and
(4.10
wherepX=pX/Trmop’. In addition, we determine the Kerr U= V2[Qnf +Qe(b—a cgsa) +DQm~ KQe] _
parameter as g
(4.21
P e BT
a=—oTrmogp, (4.1D Thus the above expressions describe the stationary axially
and one can see that symmetric massive configuration possessing the all possible

charges and NUT parameter. The latter characteristics does
M2+ b2+ D2+ K2—Q,2—Q, 2—a?=02 (412 no_t permit to |.nterpret this source properly as a black hole, in
spite of a horizon presence.

If one introduces the notation This solution seems to be original. Although the expres-
sions for the some metric components or fields look like the
A=(r—m)2—¢?, &=r?+(b—acosf)’—D2—K?2 ones obtained earlid#,10,11, one may see that in the so-

(4.13 lution presented all physical charges of the system are inde-
pendent to a certain degree. So, the conditidns and(4.6)
the four-dimensional line element can be presented in thgeave six independent parametgrsandm¥, that occur in

form the expression$4.8)—(4.11) for the physical charges of the
system, and as a result of this the condition for these charges
ds?=f(dt—w,de)?—f1ds3, (4.149  and angular momentum is E¢.11). The solution differs
from the one obtained ifil1]; we have not free parameters
where corresponding to dilaton and axion values at infinity because

of asymptotic behaviof4.7), and the charges of the system

_ A-a’sir’ 6 do not always satisfy the constrai@t,m= Q.b.
f= 5 ’ (4.15 By some choice of constans. andmX one may obtain
the massless configuration with all other charges, that re-
The metric functionw,, is determined as quires the adequate interpretation. More specifically, the dif-
ferent choice of above constants allow to describe some of
2 models known, as a electric rotational configuration with

(O]

b cosgA —asir? ¢ mass and dilation charge, as well as the dilaton-axion gravity

without vector fields. Certainly, the solution presented con-
tains Kerr-NUT metric; however, it does not describe the
' (4.16 extremal sources because @f 0.
Hence, the solution obtained is a nonextremal rotating
and one can see that the constam@@nd b are actually the black-holetype [4] source, possessing all possible physical
rotation and the NUT parameter, respectively. charges of the EMDA system.

¢~ A—a’sir? 0

X

1
mr+b2_ E(Qez"'sz)
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V. DISCUSSION ample, Kerr-NUT source and an electrically charged dila-
In this paper we continue to investigate the IST a Iica—tonic black hole.
Pap 9 PP It would be interesting to further develop the formalism

E'r?]r; tgiﬁzltrea}lr\tnh/?;l;l()\:v glod(re;?/i\;v 'tcvg;]m;gstfnn Srzza;exriézaf?etl\gg'under consideration and to connect it with the Geroch group
9 y [12] construction for the chiral matrix models.

is one of such model. In the framework of this theory we
obtain the soliton solution from the trivial metric and fields
configuration by use of Belinskand Zakharow_-A pair [5]
and the result of 8]. This solution describes the rotating  This work was supported by RFBR Grant No. 00 02
charged object with NUT parameter, that includes, for ex-17135.
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