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Rotating soliton solution in Einstein-Maxwell-dilaton-axion gravity
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~Received 16 July 2001; published 26 December 2001!

We demonstrate the possibility of the application of the inverse scattering problem technique to a chiral
string system with the nontrivial group condition. We consider the Einstein-Maxwell theory with dilaton and
axion fields and construct the massive rotating solution with nontrivial fields characteristics by use of the
Belinskiı̌-ZakharovL-A pair.
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I. INTRODUCTION

Recently much attention has been given to the study
gravity models appearing in the low energy limit of supe
string theory@1#. Some of them possess the chiral mat
representation in the stationary case that allows us to a
the different mathematical methods for the construction
exact solutions.

The model under consideration is the Einstein-Maxw
theory with dilaton and axion fields~EMDA!. It appears in
the framework of heterotic string theory after the omission
a part of the fields arising during extra dimension compa
fication. As has been established earlier, the thr
dimensional chiral matrix of this theory belongs to t
Sp(4,R)/U(2) coset representation@2#.

The EMDA theory is well investigated and a number
exact solutions of this theory is constructed@2–4#. Therefore
it would be interesting also to apply the inverse scatter
problem technique~IST! @2,5–7# to this model for the con-
struction of exact solutions.

In this paper we continue to consider the IST applicat
to chiral theories with matrix dimensions greater than tw
Starting from a trivial group model@8#, we generalize the
result to the case of the symplectic group. The solution
tained depends on a number of constants, and both the
metry and group conditions reduce to the restrictions
these constants. This way differs from the one propose
@7#; for the real group the group requirement in the case o
arbitrary value of the spectral complex parameter seem
be not obvious.

By use of the Belinskiıˇ-ZakharovL-A pair for the two-
soliton case we construct the nontrivial axially symmet
metric and field configuration from the trivial one. This co
figuration corresponds to a rotating massive source with
physical charges, possessing a NUT~Newman-Unti-
Tamburino! parameter. Since the scheme proposed does
depend on a matrix dimension of the theory, it is possible
apply it to a soliton solution construction for the string gra
ity models with arbitrary matrix dimension.

II. MODEL UNDER CONSIDERATION

The EMDA theory taking into account dilaton, axion, an
Maxwell fields coupled to gravity is described by the acti
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S~4!5E d4xugu1/2S 2R~4!12]f21
1

2
e4f]k22e22fF2

2kFF̃ D . ~2.1!

Here R5R..mn
mn is the Ricci scalar~Rmls

m 5]lGmf...
m ! of the

four-metricgmn ,

Fmn5]mAn2]nAm ,
~2.2!

F̃mn5
1

2
EmnlsFls ,

f is the scalar dilaton field, and the axion is written in t
form of pseudoscalar fieldk.

Below we consider the stationary case when the me
and matter fields are time independent. The four-dimensio
line element can be parametrize according to@9#

ds25 f ~dt2v idxi !22 f 21hi j dxidxj , ~2.3!

wherei 51,2,3. As it has been shown in@3#, in this case part
of the Euler-Lagrange equations can be used for the tra
tion from the spatial components of vector potentialAi and
metric functionsv i to the magneticu and rotationalx̃ po-
tentials, respectively. The new and old variables are c
nected by the differential relations

¹u5 f e22f~&¹3AW 1¹v3vW !1k¹v, ~2.4!

¹x̃5u¹v2v¹u2 f 2¹3vW ~2.5!

~here v5&A0 , and three-dimensional operator¹ is con-
nected with the metrichi j !. Then the resulting three
dimensional model can be described by the action@2#

S5E d3xh1/2S 2R1
1

4
Tr~JM !2D , ~2.6!

where JM5¹MM 21, and R is the curvature scalar con
structed on the three-metrichi j . The symmetric matrixM
has the form

M5S P21 P21Q

QP21 P1QP21QD , ~2.7!
©2001 The American Physical Society24-1
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MARIA YUROVA PHYSICAL REVIEW D 65 024024
where the symmetric 232 matricesP andQ are

P5S f 2v2e22f 2ve22f

2ve22f 2e22f D , ~2.8!

Q5S 2x̃1vw w

w 2k D , ~2.9!

andw5u2kv.
The matrixM belongs toSp(4,R)/U(2) coset representa

tion @2# and, hence, satisfies the symplectic and symme
properties

MTLM5L, and MT5M , ~2.10!

where

L5S 0 2I

I 0 D .

Next, we will consider the stationary axisymmetric fie
configurations. The metric and matter fields depend only
two space coordinates, and the three-dimensional line
ment can be taken in the Lewis-Papapetrou form:

ds3
25hi j dxidxj5e2g~dr21dz2!1r2dw2. ~2.11!

The action of the system becomes

2S5
1

4 E drdzr Tr~JM !2, ~2.12!

and the chiral matrix Euler-Lagrange equation reads

¹~rJM !50. ~2.13!

The Einstein equations become the relations defining
metric functiong :

g ,z5
r

4
Tr@Jr

MJz
M#,

~2.14!

g ,r5
r

8
Tr@~Jr

M !22~Jz
M !2#.

In these relations all variables depend on two coordinater
and z, and the operator¹ is connected with the flat two
metric dab .

In the stationary axisymmetric case the system under c
sideration is completely described by Eqs.~2.13!,~2.14!.
Now let us consider this system with nontrivial group co
dition ~2.10! and apply the inverse scattering proble
method for construction of soliton configuration from th
trivial fields and space-time metric.
02402
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III. INVERSE SCATTERING PROBLEM METHOD

By use of the Belinskiıˇ and ZakharovL-A pair @5# we
would like to employ the modified scheme proposed in@8#
for a case of matrix model with nontrivial group conditio
So, we consider the Einstein-Maxwell system with dilat
and axion fields, possessing theSp(4,R) isometry group,
locally isomorphic toSO(2,3) one. This gives the reason
believe that the scheme presented here may be applicab
the case of arbitrary orthogonal group string theory.

Let us describe the main aspects of the scheme used.
axially symmetric motion equations~2.13! read

¹~rJM !50, where JM5¹M M 21, ~3.1!

¹ i5] i , i 5r,z. The integration of matrix equation~3.1! is
associated with theL-A pair @5#:

D1c5
rJM

z2lJM
r

l21r2 c, D2c5
rJM

r1lJM
z

l21r2 c,

~3.2!

where JM5rJM and the differential operatorsD1 and D2
are

D15]z2
2l2

l21r2 ]l , D25]r1
2lr

l21r2 ]l ; ~3.3!

l is the spectral complex parameter and the functionc
5c(l,r,z). The solution of Eq.~3.1! for the matrixM is
represented as

M ~r,z!5c~0,r,z!. ~3.4!

The functionc can be obtained in the form

c5xc0 , ~3.5!

wherec0 is some known solution of the system~3.2!,~3.3!.
The equations forx are

D1x5
rJM

z2lJM
r

l21r2 x2x
r~JM

z!02l~JM
r!0

l21r2 , ~3.6!

D2x5
rJM

r1lJM
z

l21r2 x2x
r~JM

r!01l~JM
z!0

l21r2 .

~3.7!

It is necessary that the resulting matrix solution be r
and symmetric, as well as it must satisfy the group requ
ment ~2.10!. The former condition is ensured because
will consider only the case of a real matrixx, but the other
ones can be attained after the solution will be obtained.

The soliton solutions for the matrixM correspond to the
pole divergence in the spectral parameter complex plane
the matricesx andx21. For the simple poles, these matric
may be represented as
4-2
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x5I 1 (
k51

N
Rk

l2mk
, x215I 1 (

k51

N
Sk

l2nk
, ~3.8!

where the pole trajectories for each polek are determined by

mk~r,z!5w~m!2z6@~w~m!2z!21r2#1/2, w~m!5const
~3.9!

for mk(r,z) and the same equation fornk(r,z) with the con-
stantw(n) . From the obvious relationxx215I ~in the poles
mk andnk! it follows that

Rkx
21~mk!5Skx~nk!50. ~3.10!

This demonstrates that the matricesRk andSk are degenerate
and may be presented in the form

~Rk!ab5na
kmb

k , ~Sk!ab5pa
kqb

k . ~3.11!

The substitution of Eqs.~3.8! and ~3.11! in Eq. ~3.10! gives

na
k5(

l 51

N

pa
l Gkl

21, qa
k52(

l 51

N

ma
l Gkl

21,

where Gkl5
(cpc

kmc
l

m l2nk
, ~3.12!

and one can see that@6#

ma
k5@c0

21~mk ,r,z!#camc0
k , pa

k5@c0~nk ,r,z!#acpc0
k ,
~3.13!

wheremc0
k andpc0

k are the arbitrary constants.
Since the matrixM (r,z) belongs toSp(4,R), it must be

unimodular. As has been demonstrated in@8# for the two-
solitons configuration, it is important that

m1m25n1n2 . ~3.14!

As before, we consider the two-solitons case, and one
generalize this to the case of 2N-solitons.

The resulting solution for the matrixM is unimodular,
however it does not satisfy the requirements~2.10!. The
Sp(4,R)/U(2) coset representation of this solution may
attained by the suitable choice of the arbitrary constant
Eq. ~3.13!. Hence, as has been mentioned above, we sa
the group condition after the formal matrix solution is o
tained. This will be demonstrated in the next section.

IV. EXACT SOLITON SOLUTION

Now let us apply the inverse scattering problem meth
to the construction of the stationary axial-symmetric tw
soliton solution for the Einstein-Maxwell system with dilato
and axion fields.

It is natural to determine the asymptotic values of t
fields as

f `51, x̃`5u`5v`5f`5k`50, ~4.1!
02402
ay

in
fy

d
-

and to put the initial value of matrixM05M` :

M05S s3 0

0 s3
D , where s35S 1 0

0 21D . ~4.2!

Then, we construct the solution in the Boyer-Lindquist co
dinates:

r5@~r 2m!22s2#1/2sinu, z2z15~r 2m!cosu;
~4.3!

the new constantss51/2(w(m)2w(n)) and z151/2(w(m)
1w(n)) @see Eq.~3.9!#. Following the IST scheme we obtai
the expressions for the pole trajectories:

m152 sin2
u

2
@r 2m1s#, m2522 cos2

u

2
@r 2m2s#,

~4.4!

n1522 cos2
u

2
@r 2m1s#, n252 sin2

u

2
@r 2m2s#,

that satisfy the condition~3.14!.
The resulting matrix solution of Eq.~3.1! for M is only

unimodular and the main aim now is to provide both sy
metry and group requirement. To do this one may note t
asc0

21(mk ,r,z)5c0(nk ,r,z)5M0 , the vectorspa
k andma

k

become constants@see Eq.~3.13!#. This makes the choice o
some Anza¨tze easier for these constants.

At first, we consider four columnspa
k and ma

k , k51,2,
a50,1,2,3 and put

p15Lp2, m152Lm2, where L5S 0 s3

2s3 0 D .

~4.5!

These relations leave eight independent parameters, w
can be combined into two matricesp5ipa

ki and m̄
5ima

ki , k51,2, a51,2. Then, the additional restrictions
that provide Eq.~2.10! read

Tr pTs1m̄50, Trs2 pTs1m̄50,

where s15S 0 1

1 0D , s25S 0 21

1 0 D . ~4.6!

Hence, one can see that the coset representation ma
realized on a matrix solution obtained after imposing so
additional conditions~4.5!,~4.6! on the constants in this so
lution. As has been mentioned above, this approach dif
from the one proposed in@7#; the authors consider the grou
condition on the matrix solution with arbitrary value of com
plex parameterl, but for the case of the real group it seem
to be complicated.

Let us now present the expressions obtained for the me
and matter fields. One may naturally determine the phys
charges of the system. So, by entering the massm, the pa-
rameter NUTb, the electricQe , magneticQm , dilaton D
4-3
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MARIA YUROVA PHYSICAL REVIEW D 65 024024
and axionK charges, one may write the main parts of t
asymptotic decomposition of the metric and matter fields
r→`:

f→12
2m

r
, x̃→ 2b

r
,

v→&Qe

r
, u→&Qm

r
,

f→ D

r
, k→ 2K

r
. ~4.7!

The above charges can be expressed in terms of the v
componentspa

k andma
k as follows:

m5s~ p̃2
2m2

12 p̃2
1m2

2!, b52s~ p̃2
2m2

21 p̃2
1m2

1!, ~4.8!

Qe5&s~ p̃2
2m1

21 p̃2
1m1

1!, Qm5&s~ p̃1
2m2

12 p̃1
1m2

2!,
~4.9!

D5s~ p̃1
1m1

22 p̃1
2m1

1!, K52s~ p̃1
1m1

11 p̃1
2m1

2!,
~4.10!

wherep̃a
k5pa

k/Trm̄s1pT. In addition, we determine the Ker
parametera as

a52s Tr m̄s3p̃T, ~4.11!

and one can see that

m21b21D21K22Qe
22Qm

22a25s2. ~4.12!

If one introduces the notation

D5~r 2m!22s2, d25r 21~b2a cosu!22D22K2,
~4.13!

the four-dimensional line element can be presented in
form

ds25 f ~dt2vwdw!22 f 21ds3
2, ~4.14!

where

f 5
D2a2 sin2 u

d2 . ~4.15!

The metric functionvw is determined as

vw5
2

D2a2 sin2 u Fb cosuD2a sin2 u

3S mr1b22
1

2
~Qe

21Qm
2! D G , ~4.16!

and one can see that the constantsa and b are actually the
rotation and the NUT parameter, respectively.
02402
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Next, the three-dimensional metric has the form

ds3
25

D2a2 sin2 u

D
dr21~D2a2 sin2 u!du21D sin2 udw2

~4.17!

that coincides with the Kerr three-metric.
The dilaton function is

e2f5
~r 1D !22~b2a cosu2K !2

d2 , ~4.18!

whereas the pseudoscalar axion field read

k5
2@Kr 1D~b2a cosu!#

~r 1D !22~b2a cosu2K !2 . ~4.19!

For the electric and magnetic potentials one obtains

v5
&@Qer 2Qm~b2a cosu!1DQe1KQm#

d2 ~4.20!

and

u5
&@Qmr 1Qe~b2a cosu!1DQm2KQe#

d2 .

~4.21!

Thus the above expressions describe the stationary ax
symmetric massive configuration possessing the all poss
charges and NUT parameter. The latter characteristics d
not permit to interpret this source properly as a black hole
spite of a horizon presence.

This solution seems to be original. Although the expre
sions for the some metric components or fields look like
ones obtained earlier@4,10,11#, one may see that in the so
lution presented all physical charges of the system are in
pendent to a certain degree. So, the conditions~4.5! and~4.6!
leave six independent parameterspa

k and ma
k , that occur in

the expressions~4.8!–~4.11! for the physical charges of th
system, and as a result of this the condition for these cha
and angular momentum is Eq.~4.11!. The solution differs
from the one obtained in@11#; we have not free parameter
corresponding to dilaton and axion values at infinity beca
of asymptotic behavior~4.7!, and the charges of the syste
do not always satisfy the constraintQmm5Qeb.

By some choice of constantspa
k andma

k one may obtain
the massless configuration with all other charges, that
quires the adequate interpretation. More specifically, the
ferent choice of above constants allow to describe some
models known, as a electric rotational configuration w
mass and dilation charge, as well as the dilaton-axion gra
without vector fields. Certainly, the solution presented co
tains Kerr-NUT metric; however, it does not describe t
extremal sources because ofsÞ0.

Hence, the solution obtained is a nonextremal rotat
black-holetype @4# source, possessing all possible physic
charges of the EMDA system.
4-4
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V. DISCUSSION

In this paper we continue to investigate the IST appli
tion to chiral matrix models with dimension greater than tw
The Einstein-Maxwell gravity with dilaton and axion field
is one of such model. In the framework of this theory w
obtain the soliton solution from the trivial metric and field
configuration by use of Belinskiıˇ and ZakharovL-A pair @5#
and the result of@8#. This solution describes the rotatin
charged object with NUT parameter, that includes, for
.

s.

ev

s.
on
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ample, Kerr-NUT source and an electrically charged di
tonic black hole.

It would be interesting to further develop the formalis
under consideration and to connect it with the Geroch gro
@12# construction for the chiral matrix models.
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